NASA TT F-473

GENERAL THEORY OF ASYMMETRIC WAVES IN A CIRCULAR WAVEGUIDE
WITH AN OPEN END
By L. A. Vaynshteyn

Translation of "Obshchaya teoriya nesimmetrichnykh voln v kruglom volnovode
s otkrytym kontsom."

Zhurnal Tekhnicheskoy Fiziki,
Vol. 21, No. 3, pp. 328-345, 1951

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information

Springfield, Virginia 22151 — CFST! price $3.00



GENERAL THEORY OF ASYMMETRIC WAVES IN A CIRCULAR WAVEGUIDE WITH
AN OPEN END

L. A. Vaynshteyn

A rigorous solution is obtained for the problem in
which anasymmetric electric or magnetic wave propagates
inside a circular waveguide towards its open end {semi-
infinite tube). Since the electromagnetic field produced
by the diffraction of this wave at the end of the tube has
two Hertz functions, the solution is considerably more com-
plicated than for the symmetric waves. Equations are pre-
sented for the reflection coefficient of the incident wave
from the open end, and also equations for the transformation
coefficients of this wave into other waves (including the
transformation coefficients of electric waves into magnetic
waves and vice versa). The radiation field is investigated
and design equations are presented for the radiation charac-
teristics. Approximate equations are derived for the radia-
tion field and for the reflection and transformation co-
efficients.

Section 1. Formulation and General Solution of the Problem

The problem of asymmetric waves in a circular waveguide with an open end {528*
is formulated in the same way as the problem for symmetric waves (ref. 1). We
consider a semi-infinite cylindrical tube whose lateral surface is situated at
r=a, z>0 (in a cylindrical system of coordinates r, ¢ z). An electric wave
Epl or a magnetic wave le propagates inside the tube towards the open end which

is at z=0. OQur purpose is to compute the electromagnetic field which results
from the diffraction of this wave at the open end of the waveguide. Nonsymmetric
electric and magnetic waves (p=l, 2, 3, ...) are distinguished from symmetric
waves (p=0) which we considered earlier, by the fact that the diffraction field
of nonsymmetric waves is characterized by two scalar functions ('"the Hertz
functions"). The necessity of introducing these functions will be clear from
our presentation below. At this time we shall assume that the longitudinal
component of the electric Hertz vector is equal to

D, =sin (pp +90) 1L (r, 2), (1)
while the longitudinal component of the magnetic Hertz vector is equal to

(2)

U, = cos (pg -+ 9,) 1 (r, 2).

The electromagnetic fields are expressed in terms of the functions 1] and
T as follows (compare ref. 2, Chapter 8)

Mumbers given in margin indicate pagination in original foreign text.
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The constant angle % is determined by the polarization of the wave inci- /329

dent at the open end. The time function is taken in the form e-luIt:e-let.

Functions T and ’ﬁmust be solutions of the eguation
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therefore, we seek them in the form

_2%a ( 4 Jo(vr) H,(va)
ir )=—"g"] ¢ {j,(va)H,(vr)}F(w)dw i »
: b
-  2%2a( e Jp(vr) Hl; (va)] 1
1 Z)*—“ch‘* [/,: (M)H,(w)}vc(w)dw!

Here C is a contour in the plane of the complex variable w which (compare ref.
1l, p. 1546) we trace primarily along the real axis and below the point (see
below) which corresponds to the wave number of the incident waves; J_ and H_=

Hél) are Bessel and Hankel functions, v=vVi*—w? Imo>0 ( for Imk>0).

The upper line of (4) should be taken when r<a, and the lower line should
be taken when r>a.

The vector of the surface current density on the walls of the tube has the
components

Jo=cos(pg +9,) [ ¢ G (w) dw
4

. . (5)
Je==sin (p9 -+ ;) f e™* [F(w) -+ % —3’5 G (w)] dw

The functions F(w) and G(w), which remain unknown, should be determined from
three considerations. The first of these is that the tangential components HZ
and H‘P of the magnetic field must be continuous when r=«, z<0, i.e., on the

extension of the tube's wall we must have

Je=1Js=0.




This gives us relationships

J. e G(w)dw=0 for 2<0, (6)
¢
j e’ [F(w)-!—i% % G (w)] dw=0 for z<0, (7

where the latter must also be valid when z=0 because the component jz of the

surface current density at the edge of the wall (when z=+0 (sic)) must vanish.
We note that the continuity of the tangential components EZ and Ecp of the elec-

tric field when r=a are provided by the very expressions (4) for [ and T written
in such a way so as to take this requirement into consideration.

In the second place the following boundary conditions must be satisfied [ 330
on the wall of the waveguide which we consider to be an ideal conductor:

E,=E,=0 for r=a,z>0,
and these lead us to relationships

f " v (wa) Fw)dw=0 for z2>0,
¢ (8)

[eiw' [4’(:’“) G(w)_;-é;aﬂ%}g—)f‘(w)] dw=0 for z>0| (9)
c

where ¢ and { are the functions

¢ (wa) = rwva H,(va) /, (va)

{ (wa) =r"va H, (va) A (va) ' (10)

We shall show how the functions F(w) and G(w) are to be found so that they
satisfy the system of functional equations (6)-(9) to which our problem is re-
duced. The solution of this problem has a more complex form than for the case
of symmetric waves (ref. 1) because we have only one unknown function in the
latter case. '

For the sake of generality we assume that the tube with the open end con-
tains two waves: one is an electric wave with amplitude A and wave number -h
while the other is a magnetic wave with amplitude B and wave number -h. We
draw the contour C in such a manner that it covers the points w=-h and w=-h
from below with a series of infinitely narrow loops. For the sake of definite-
ness we assume that Imk>0 in all of the discussions; we approach the limit
Imk=0 only in the final equations.
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1. Relationship (6) will be satisfied if the function,in the lower semi-
plane (i.e., when Imv<0) is holomorphic everywhere with the exception of point
w=-h where it has a simple pole with a residue B and when |w|—+m in this semi-
plane the function tends uniformly to zero.

2. If the function G(w) has the properties specified above, then, in order
that relationships (7) be satisfied, the function F(w) must be holomorphic
everywhere in the lower semiplane Imw=0D with the exception of the point w=-h,
where 1t must have a simple pole with residue A, and at the point w=-k where
it must also have a simple pole. Furthermore, the product wF(w) must tend
uniformly to zero at infinity in the lower semiplane.

3. Relationship (8) will be satisfied if the product v¢{wa)F)w) is holo-
morphic in the upper semiplane (when Imw20) and if it tends uniformly zero in this
semiplane when |w - @,

4, If the product vq(wa)F(w) has the above properties, then in order for
relationship (9) to be satisfied it is sufficient that the product ﬂ&%&l a(w)
be holomorphic in the upper semiplane everywhere, with the exception of the
point w=k where it has a simple pole. Furthermore, this product must tend

uniformly to zero at infinity in the upper semiplane.

The considerations presented above compel us to seek the functions F(w)
and G(w) in the form

_ 1 F F.
F(YH) - Vk——_w [ (ma) (rn -!l- h -+ F-ﬁ n-) l
_ Viw { ¢© G ' (11)
Gw%"%Wﬂ&:Z+kiJ[

where qé(wa) and wg(wa) are functions which are contained in the expansion of /331

functions (10) into factors (see equations (17) below) and are holomorphic in
themselves in the lower semiplane Imw<D.

Expressions (5) for the surface current density must have the following
form when z>0:

Jo=rcos(pp—+ ;) [Be~"™ +...]
jl=5in (p‘P-’—?n) [149—”"—l£ ’L‘ Be—';'—k .o .] ' (Sa)

a ;2—:_}:2

where the terms which have been written out correspond to the incident waves
while the sequence of dots replace terms which characterize the current occur-

ring as a result of diffraction at the end. Therefore the constants Fl and. @i

in (ll) are associated with the amplitudes A and B of current density by the
following relationships:

L
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where
91 (wa) =9, (— wa) Y, (wa) = ¢, (— wa)
are functions which are also contained in expansion (l?).
The constants F2 and G2 are determined from the requirement that the func-
tion under the integral sign in (7) have no pole at w=-k, while the function under

the integral sign in (9) has no pole at w=k. This gives us two algebraic equa-
tions

F,—kA(_k—?_"—;c,-»G,):o,

kG’,+A(k—f_'i,T F,+F,)=o,
where

- ) (ka) .
2ka v, (ka) (13)

From this we obtain the constants F2 and GE:

2k 2k2
2
k+h F‘+Ak_7, G

1+ A2

2 2k
— A2
b PG
2 14 A2

A

Fo=—
(1%4)

Equations (11)-(14) give us the desired solution to the system of func-
tional equations (6)-(9) and thus the solution to the formulated electro-
dynamic problem. .

In the future we shall consider only those cases where there is only one
wave traveling inside the waveguide towards the open end--an electric wave or [332
a magnetic wave. Therefore we shall assume that one of the constants Fl or

Gy (i.e., A or B) is alternately equal to zero. In this case according to

equations (14) both of the constants F, and G, always differ from zero (for
asymmetric waves) so that the complex €lectromagnetic field, which occurs dur-
ing the diffraction of asymmetric electric or magnetic waves at the open end

of the waveguide, will always have an electric as well as a magnetic Hertz
function. Therefore, among waves which are traveling from the end of the tube
into its interior we have all of the electric and magnetic waves with the same
azimuthal relationship as the incident wave. Symmetric waves for which p=0
serve as an exception in this respect because for these 4=0 and F2=G2=O, so that
the electromagnetic field has only the Hertz function.



The occurrence of the other Hertz function, which is absent from the field
of the incident wave, is associated, from the mathematical point of view, with
the fact that the use of only one function F(w) or G(w) makes it impossible to
satisfy all of the functional equations (6)—(9), i.e., to satisfy all of the
boundary values of the problem (including the condition jZ=O at the edge of the
wall. ‘

Section 2. The Properties of the Auxiliary Functions

Let us introduce a dimensionless parameter

x=ka=2" (15)
and dimensionless variables
w' = wa v' = va = \x® — (wa)?, (16)

where in the confines of the present section we shall simply write w, v in
place of w', v' for the sake of brevity.

The breakdown of functions (10)

¢ (w)=7UHr ('U)./p (W=10,(w) ¢, (w) .
§ (w) = moH, (v) ] (v) = ¥, (@) 4, (w) (a7)

into factors such that (w) and ¥ (w) are holomorphic and contain
no zeros in the upper sefiiplane Imw=20 while qé(w) and ¢2(w) have the same prop-

erties in the lower semiplane Imw=D, is obtained by means of equations

1 —ixg+-00 () d 1 %90 ( ) d
w w w w
n@=gm [ L2 p@=—gy [ LET

—ix—o xg—co

where O<MO<IMK. For the function q(w)

Y@)=lng@) o @=et® g @)=com, (18)
while for the function ¢(w)
x@=lt@) h@=de  Ge)=em (19)
In this case
1 (w)= 9 (— w) 4y ()=, (—w). (20)
Such breakdown equations were used frequently in the past. We designate
q
vm(m:l, 2, ...) the m-th root of equation
jp (V) = 0)

/333




and by um(m;l, 2, ...) the m-th root of equation

J,(B)=0,
where the positive numbers Vi and pm are placed in order of increasing magni-

(p) (p)

tude (generally speaking we should write Vm and but in order to simplify

matters we drop the superscript p and consider it to be fixed). For p=1, 2,
the relative order of the roots Ym and pm is as follows:

H1<V1<l"z<vz<-- -<P'm<"m<{"m+1< .

The function (w) becomes equal to zero at the points iymwhere

y,,,=\/x2—-vf. (Imyn >0 for Imx>0) (21)
is the dimensionless wave number of wave Epm’ while the function {{w) becomes

equal to zero at the points iin where

Ym=VE—pL  (In7>0 for Imx>>0) (22)

is the dimensionless wave number of wave Hpm' The usual wave numbers wm(for

aw i ti
Epnpam, wthor Hpm) are given by the equations

wm=7:=‘/k2—(“—;-)2 fn=12=1/t2— (t=]". (23)

In the final expressions we usually consider the parameter » as a real
positive number and are concerned with the values of the functions for positive
values of w within the limtts

— e w<nx. (24)

Using these values of w it is -expedient to transform the initial equations
for the functions %’ qé, b ¥ in the same manner as carried out earlier for

symmetric waves E. and HO (ref. 1). As a result we obtain the expressions

0

S(w)

?1(w)=%(—w)=]/”("-"‘w)Hp(v)jﬂ(Uj 1 z::ze’ (25)

+w 3@
¢1<w>=¢z<—w>=]/r<x—w>ﬂ(v)/ (v) H et (26)




Here n designates the number of waves Epm’ which are capable of propagating in

the waveguide for a given u, while 7 is the number of propagating waves H n' In
other words we assume that

"n<"<vn+1 Pa <“<l";+1'
We let
S(w) = X (w) + i Y(w). (27)

The real part of the function S is equal to (the integral for X is taken  /33h4
in the principal value)

f Q (v)dw —

X(wy)= % o —wg —  Wo E (vy, *)

-—X

’ (28)

E (vg, %) = __:_ [ Qv)v—Q(v) vy dv

o — ol Va2 — o2

where VO:‘/?~W§' The imaginary part of S when Osw.<n is given by the equation

0
ol
Y(wo)—-——~0(v)+2hm {— 2 arcsin—v;—"ﬂ—:’-h
m=n+41 m- Yo

wy Qv)v dv
T j. v’—-us Vo2 — x2

. } (29)

The function Q contained in the above expressions is determined from the re-
lationships

To(o)

Q(0)==0 Q(vm)?mn

Q (v)=arg Hy (v) + ;-=arctg No(o) .
(30)

If, in equations (28) and (29) we replace the function Q by the function
Q which is given by the eguations

. N, (v
S)(v):argH;(v)————-arctg ()——12—'-

Jp @) ' (31)
00)=0  Glp)=(mn—1)=

and also replace v_ by p. and n by n, we obtain the real and imaginary parts
of the function

S(w)= X (w) + iV (w). (32)

We note that when v>>1 (or when v>>Z) the following asymptotic equations
exist for ({v) and A v)

8




pt—
Q(v)-—‘v-—?p-;—ln—i-—~—4

2v

3 |’ (33)
Goym o221 T
v)=1 4 ™+ %o

from which we obtain the approximate equations for the higher order Vi and N
roots

{
pr—-
V..=1¢|m+2p:1_ 2p —1
L 2%2(m+ P;)
102-4--3
| Pl _ 4
] 4 ) 2P+1
L th(m+ 7\ )

The above equations make it possible to compute the functions TR ¢l /335

and yo which are contained in the general solution of the problem on the electro-
magnetic waves in an open tube, which has been presented above in section 1.

In the figure we present (for p=l) the absolute value of the function A
(13), multiplied by.2u, and its phases arg A as a function of the parameter
#=ka. These curves oscillate respectively
near the values p=1 and T/2, and undergo
breaks at the "critical" values of the param- ’ I Vi M % s W
eter u when one of the waves Epm or B ' ' T

~N

wave; the amplitude of these oscillations

drops off slowly as u increases. This unique
"resonance" behavior is also common to other ’
auxiliary functions, and leads to character- \\\/ \\\/ N
istic breaks in the curves which show the 2x/a/
frequency dependence of various physical
quantities for a waveguide with an open end.

bm /\<<?4
changes from a damped wave to a propagating \/// }\\\\

Section 3. Current Density at the Wall. A .
Coefficients of Reflection and
Transformation

If an electric wave Epl which propagates through the tube with wave num-

ber -h=-w, moves into the open end of the tube, then, according to equations
(11)-(14) "we have
A VE+hei () 1 Al 2k 1 ]
F(w)= w+h 1+8k+hk+w

2T Vi—w [ (wq)
A —24 9 (1) I

(34)

Gw) =i as Vir hVk—w Yy (wa)



This makes it possible for us to obtain from equation (5), when z>0, the compo-
nents of the surface current density on the wall of the tube, in the form

® ©
; \ . \ Y Ym -
j’=5in(p9 -+ ?,,)A ( e_'h‘ -+ \ Rl,m ettm’ —- ip \ ;:'{a" Tl,m e'vm’ - Q: )

m=1 . m=1'm (35)
i =cos(pp—+9,)A < : T,,.,.e"'°-'+Q,9>-
m=1
Here
—/ 1 (1) 82 2x(yi+m)
R""_l/x-vm (114 1m) @3 (1m) [_1 T B (1) (x + o) (36)

is the transformation coefficient (for the current) of wave Epl into wave E

(in this case R” is simply the reflection coefficient of the wave Ept from the

open end), while

——24 e (1)
102 V(x4 12) (x — Ym) ¥ (Tm) (37)

lym

will be called the current transformation coefficient of the wave Epl into wave
Hpm

Let us now consider other possibilities when a magnetic wave H_, with cur-

pt

rent amplitude B and wave nunber -he-w
In this case

{ arrives at the open end of the tube.

B —2a k24 (11)
F = K"
() W1+ A2 0 R YVk 4 & (k4 w) VE— 9 (wa)
Gy YEzwhom (1, & 2% 1 ) (38)
2mi \/k+}3¢2(wa)(w+}7 1+082k—h k—w

and the surface current density components, when z>0, are equal to

-]
Jj,==cos (pp+9,) B ( ™ N Rimen’ +Q, )

ma=1
P (39)
j-=5in(P‘P"'%)B!|:iP<—":‘}e—"".g-_\_'—%"-R,,,.e“’"")-f- .
m=1 ™

+ 2: Tl,”‘ eom® 4 Q-:"

m=1

10
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Here ﬁ;m_is the current transformation coefficient of the wave Hpt into wave

H and is given by the expression

Pm
D o—y/*Tm b (1) [ a2 2% (Y1 + Fm)
Rl,m - ‘/ X+ (Y 4 Fpm) 4/, (Tm) 1 i (x— ) (% — Tm) (LLO)
where ﬁ} ) is simply the reflection coefficient for the wave le from the end
)

of the tube. It is natural to call the quantity

7o 2 x® 4y (1)
Tim = T8 (y o) v, e o) Ve 010 (41)

the current transformation coefficient for wave le into wave E

The coefficients R1 o and T} n give complex amplitudes for the longitu-
) )
dinal component of the current density in electric waves which travel from the
open end of the tube and which are excited by the incident wave, while the co-
efficients Tt - and R1 - determine the complex amplitudes of the azimuthal com-
pd t4

ponents of the current density for magnetic waves which move from the end of
the tube into its interior.

We note that for electric waves the currents flow in the longitudinal
direction only while the magnetic waves have both a longitudinal and an azi-
muthal component of current density. Near the critical frequency of a given
magnetic wave the aximuthal component for the current density exceeds the
longitudinal component. However, as the frequency is increased they become /337
comparable and at frequencies which substantially exceed- the critical fre-
guency, the longitudinal component becomes the dominant one. Let us introduce
the coefficients

I3 ‘-{'"
S m=R 1 o=ip —- T,
. Pl,m iym Iym P P",’;. lym (42)
and
3 a

- B Ym A _ 1 ® =
Slym = ?"‘;—Rl‘ m T = T :_T‘ "
vy nl ."l 3 ] ip 7, fynny ()43)

which, as we can easily see from equations (35) and (39), are the reflection
and transformation coefficients for various waves along the longitudinal cur-
rent component. It is expedient to utilize these quantities for large values
of the parameter u when they all have the same dependence on #.

The reflection and transformation coefficients determine the electromag-
netic field inside the waveguide. Usually we are interested only in the propa-
gating waves which carry back part of the energy introduced by the incident
wave, into the tube and which determine the field inside the tube at sufficiently
great distances from the end where damped waves can be neglected. The best

11




illustration of the transformation of one wave into another is given by the

power transformation coefficients. If, for example, we designate by (Epl’ Hpm)

that portion of the energy in the incident wave E

o1 which is carried away by the

inverse wave H

om’ we shall have the following expression for the power transfor-

mation coefficients;

—_— Im H —_ ?m n2 2
i )= 5 Rinlt (B o) = (105 Tin
oo T 1 (44)
_ 'm0 m B 2 L Ym 2 .
(Hyl’H,:m)"—‘ 3 “:" 1 n {Rl,m (H,.I, Eﬂm)_? ey o ITI,m|2

1—

E%
Tl

From the general equations presented above for the current coefficient
of reflection and transformation, it follows that for propagating waves

(Eyrh Epm) == (E]nn. Epl); (le, H,mv) = (Hpm, le); (Epl Hpm) = (Hpmv Eﬂ)

and

arg R, ,=arg R, ;;.arg R ,,=arg R, ;; arg T, m=arg T

These symmetry relationships must be satisfied in the general case for anpy
discontinuity in the waveguide.

The terms qu Q. élﬁ Q; in equations (35) and (39) are expressed in terms

of integrals along a loop which covers the cut k — kt+ie For large values of 2z
these integrals decrease in inverse proportion to some power of z. It 1s easy
to show that they produce the surface current density on the external side of
the waveguide's wall whereas the remaining terms represent the current density
on the internal side of the wall directly associated with waves inside the tube.

Section 4. The Huygens Principle

The most rational approach for computing the radiation in accordance with {338
the Huygens principle consists of using an approximate expression which asso-
ciates the radiation with the electromagnetic field of the wave incident at the
open end. Using this method the radiation field of the electric wave E , can
be obtained in the form P

T wnl2ma 4 sindf, (x5iad ) %R
£ H;.._——sm(pgo+<p‘,)(—~z)”—cz4 K\‘fﬂ—cosy R (LFS)

E,=—H,=0

12




T g

where A is the amplitude of the longitudinal component for the current density

of wave Epl’ while 01 is the angle which is associated with the wave number

-h=-w1 of this wave by the relationship

kcoshy=—h. (46)

By using this method we obtain equations for tne magnetic wave which are
more complicated. Specifically for the wave H in the wave zone we have the

field Dt
% ind kR
" E,=H. =—sin(py /.g“)(__i)r:-n 2za BP (L LOSJ;COS{))‘/" (x sin 9) eR
; R ! (47)
= = v N {__ap41 27a _],,(xsm\‘)) ¢
E? - f{b - cos (P? —+ T‘“)( 1) ¢ B co:hw——cossz R

where B designates the amplitude of the a21muthal current density component of
wave H (see equation (52)), while the angle 0 is associated with its wave

number —h=-w1 by the relationship

k cos ), =— h- (48)

Here we have introduced spherical coordinates R, ¢ ¢ with the same origin
as that of the coordinate system r, ¢ 2z; ¢=0 is the direction of the positive
z axis (along the tube) while &= corresponds to the extension of the waveguide.

There are other possible methods for the approximate computation of the
radiation field, which are based on the application of the Kirchhoff equations
to the auxiliary quantities which characterize the electromagnetic field. By
using the Hertz electric vector we obtain exactly the same equation (45) for
the electric wave as before. On the other hand if we apply the Kirchhoff equa-
tions to the Hertz magnetic vector we obtain a radiation field for the wave

H in the form .
pt

Ey=H,=0 )

' P kR
2=a sinZ ¥ j, (# sin ¥) e . ( 11-9)
E. = — Hy=— -+ — B _ —
v » €03 (py + 90) (—1) ¢ sin?¥.  cos —cos W R

In comparing the two calculation methods for symmetric waves (ref. 1,
section h), we note that the first method is to be preferred from considerations
of uniqueness; a comparison of the radiation characteristics for wave HOl car-

ried out at the same time {ref. 1, fig. 7) also shows a preference for the first
method. PFor the asymmetric waves its advantage is obvious. In the first place
equation (49) for the radiation characteristics of wave H , shows a dip when

=1 which does not correspond to the true state of things. In the second place,
under the condition #>>1 when only good results can be expected from the Huygens
principle, the field E —qu accordlng to equation (47), is much stronger than

13



the field Ecp=-Hz9 and this result is in good agreement with the rigorous theory.

However, according to equation (49) the fields E =Hq?0.

2
These results require that we reject the Huygens principle in other prob- /339
lems when this principle is formulated in the form which utilizes the auxiliary
potentials of electromagnetic wave. This form is superfluous when it leads to
the same results as the Huygens principle for fields (first method) and if it
produces other results then these are completely unreliable. Therefore, in the
future we shall interpret the Huygens principle to mean the first method of
calculation. Below we compare the Huygens principle with the exact solution.

We should like to point out another method for carrying out the approxi-
mate calculations which leads to the same final equations as the Huygens prin-
ciple (for fields),‘but which has certain methodological advantages in several
cases. Specifically we shall assume that the current density at the wall is
the same as at the wave which propagates inside an infinite tube (i.e., when
z>0, the current density 1s described by the terms of equation (5a) which
have been written out) while along the extension of the wall (i.e., for z <0,
it is equal to zero). The functions F(w) and G(w) which give this current
distribution are as follows

A 1
Fo) =y oo Glwr=0
for the wave Epl’ and
__Pv ipa k2 — hw = “ '———1
F (w) = 7= }A: s Gw) =: 2% g 4k

for the wave H_ ..
pl

From these the radiation field can be easily determined. Substituting
functions F and G into equations (51) and (52) of the next section we again
obtain equations (45) and (47) of the Huygens principle. The equivalence of
both methods (not only for waveguides but for other radiating systems) may be
easily proven in the general form.

Section 5. The Radiation Characteristics

In the wave zone, more precisely outside the waveguide at distances R from its
end such that

kR>1, kRsin®3a>1 (50)

we obtain the following equations for the Hertz functions from the exact ex-
pressions (ref. 4) by using the method of steepest descent: :

“=—(-i)ﬂ_rk /P(V'Sin“)r sind R

o WwR )
U= —(~«i)"*‘i'c‘k—"~j,,(7. sin V) F'(k cosi))e—R— | (51)
> 51

- =% a G (k cos iy P {

)
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From the open end we have diverging spherical waves whose electromagnetic
fields are equal to

E,=H. = —sin(pp + 5,) k" sin 41T
: (52)

E, =~ H, = cos(py +9,) k2 sin 911

The directional propagation of radiation is given by the function
- ¢
S 0, =gz (B Hy— B, Hy R'= & (1E, [+ | H, I R »

so that
2, 9)d0

is the power radiated inside an elementary solid angle d0. It follows from
equation (52) that

> (9, )=sin*(p9 + ) ¢ (9) -+ cos* (p9 +¢,) ¢ (9), (53)

where the positive functions <) and '5(19) depend only on the angle 9. ZBLLO
Because

5 (3) =g k'sind 11,2 R?

. i
§(9) =g k*sin*9 | [* R (54)

o §) may be called the electric radiation characteristic while o ©) may be
called the magnetic radiation characteristics. When =0 and &=m the function
2(19, cp) must not depend on ¢; therefore, the following relationship exists be-
tween the electric and magnetic characteristics

2 (0, ) =14(0)==3(0) 2 (7 9)=rc(m)=3d(r). (55)

Relationships (51)—(55) may be applied to various approximate calculations.
We shall distinguish the radiation characteristics according to the Huygens prin-
ciple from the exact values by the subscript 1. From equation (45) we obtain

. %®  Csind Jp (xsind) )2
Gy (\l)) — P ZZw, L cosy — cos ¥ , (56)
'61(3):“0
where
p="21 g (57)
is the power of the wave Epl (p=1, 2, . ..). In the same way, from equation

(47) for the wave Hp p Wwe have
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@)=~ < 2‘82 . R [(1 ~+cos 9; cosd) -jf'g:-——-—-:;n 97
2%, ( — )

. 8
0 p u} AN ' (58)
n ()= 2nx?1(1~£—2—) Lcos ¥ —cosh
W
where the power P of wave le is equal to
P:“g“zﬁi<1_£2_>13|2, (59)
e w} ui '
For the wave Hll
N o)=n(n)=5(m)=pP 201" (60)

7 ;]
8r 7y (uj—1)

while, according to the Huygens principle, for all other waves
21 (7, g)=10,(x)=6,(x)=0. (61)

We return to the investigation of the exact expressions for the
radiation field. We obtain the radiation of the electric wave from the open
end by substituting expressions (34) for functions F and G into equations (51).
From this it is now easy to obtaln specific design equations. Thus when
v, <n<v, we have the radiation characteristics for the wave E in the form

1 2 pi
. . X(1)+X(xcos §)
e(==pZnlrn? __ Jplesind) __ e 1+
mvix sin2 3 | Hp (xsin 3) | cos?d — cos® v, (62)
242 cos ) —cosi, |2
+COSS—I+A'-‘ 1— cos |
where, for V) <n<u, /341
Bx- A Jp (% sin ) cos ¥ — cos i), 510
(=P = Tl R L4 1 o X(1)+X(xcosd) 4
@) 7:'~’vf|1+'3‘l‘ sin'l-‘)IH'p(xsin{})| cosu‘)+805{),e (63)
while for p2<%<v2 the last expression must be multiplied by
cosd — cos ¥,
cosd + cosh, (632)

For any value of the parameter u the radiation characteristics of the E )
wave satisfy the relationships P

s@)=a (=P J2_(v)
3(0,)=350,)=0 (for m¥1l) (- (64)
5(3,,)=0 (m=1,2,...)
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From expressions (62) and (63) we obtain the energy balance

f ds J 2 (3, 9)sin wdd =
] PO (65)
== [ 5@ +3 @)]sin9dd =P} 1—[(E,,, Ep) +(Ep, H)] | »

]

H ]) are the reflection and power transformation

pl” “pl

where (Epl’

Epl) and (E
coefficients introduced above (equations (44)). Equation (65) is suitable
when vy <u<p, and p,<u<v, the function o 9 has an additional multiplier (63a)

which is responsible for the addition of term (B Hpg) in equation (65).

pl’

If, however, the wave H

51 approaches the open end then we obtain a field

in the wave zone from equations (51) and (52) by substituting the function F
and G from equations (38) into these expressions. We obtain the following mag-
netic characteristic from the general equations for the wave H_. when pl<n<u2:

Pl
2“? b _/’I, (xsind) ei(?') + X(xcond) .

“Ex(4+7)° g2 d l—f};,(:t:m_h) l cos® ()w:c_osi’B,A ! (66)

5(9)=P

|
242 cosd —cosd, P
1+ AF 1+cos\‘;‘]

—-COS W} -+

In regard to the electric characteristic, in the case p1<n<v2

tric waves with the same azimuthal dependence do not propagate at all, it is
equal to

, when elec-

Al Jp (2 sin d) ef(f.)#-X("‘“s) ( 67)

9 — 87".-'1 L I"
s@)=PF ATE sint 9| H, (xsin 9)

i
:'-'y.f |1+

and for v <u<p2 when the wave E

| is capable of propagation we must add the

pl

following factor into expression (67):

cos ¥ — cos iy
cos V¥~ cos v, (673-)

According to equations (66) and (67) the total radiated power is equal to /342

2 " 1.3
[do [ N (9,9)sin9d9 =7 [ [3(0)+5()]sin 90 =P [ 1 —(H, Hp) ], (68)
Ly o 0

where in the case v, <u<u, we have the sum (le, le)+(le, Epl) instead of

(le, le) in equation (68) due to the multiplier (67a). The radiation
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characteristics of magnetic waves H

o1 satisfy the following relationships at all
frequencies:

=6 =P 5 (1= %) e |
30 =50,)=0 (m=%£)) [ (69)
6(9,)=0e,01,)=0 (m=1, 2,...)

We note, in conclusion, that the Hertz functions (51) in the wave zone
are associated in the following manner:

limsin9 - 1 =limsin % - §i limsin9 - 1= —limsin 9 - 7. (70)
> n fam #20 -0

These equalities cause relationships (55) to be satisfied. They show that the
formation of a wave field whose radiation is different from zero in the direction
=T is possible only when both the electric and magnetic Hertz functions are
present.

Section 6. Approximate Equations

Let us investigate the form which 1s assumed by the exact expressions, deduced
above, when we have the following condition:

r=ka>1, (71)

i.e., sufficiently large (compared to wavelength) radiating apertures. We use
the equations

Ing, (rcos$)=U In 4, (xcos9)=U for cosd4 >0 (72)
- 2
Ing, (x cos¥)=Ins(xcos¥)+ Ulny,(xcosd)=In{(xcos9)-+-Urop cosd< 0] T
(see refs. 1 and 3, section 6), where U and U are the integrals
1 ¢ lno(xsinT)costds 51 In ¥ (% sin 7) cos td=
U—27Ti j sin T — cos ¢ U_2Tx sin T — cos ¥ (75)

L, T

along the contour I'. which passes in the plane of the complex variable T through
the point 7=0 in theé direction which provides for the most rapid increase in
the real part of function cos T. Since the contour Ib is symmetric with re-

spect to the point ™0, U and U are 0dd functions of cos 9, and haye a dis-
continuity at cos &0. If cos &% and n — « the functions U and U tend to
ZEero.

By using equations (72) we obtain the followi%g expression for the radia-

tion field of wave Epl in the forward half space (§ <P<m) :
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9 1+42) — -
sin - s tg — .
Ne=(—iy 20 q 2 Jplrsind) B2/ oMhrtny
ck? sin 3 cosd—cos 1+ A2 R

-~ »

2 (74)
A j,’, (> sin V) 06*R+1"1+7/
1+ At & b R

. . o
$IN — SIN - sin o
2 2

- 2%a
o (e Y+ T
1l _( 1) e A

while in the rear half space, when O<z9<g, we have

¢ Wy 2
.
4 1+ 42 _(2—
sin - t % .
I — (_—— i)" ~2 A 2 1 g 2 elkﬂ+b’[+l/
ck? n ¥ sin 3H, (% sin ¥) (cos Y — cos V) 1-+ A2 R . (75 )
2
= (— iy 2 A2 1 ehtties
ki 1+42 3y 0 o R
sin - sin .- sin? 3 Hl‘(x sin V)
Here U1 is the value of the function U when ?9=‘TT—¢91 , 1.e., when
Y1
cos Pg=—
“

(see equation (L6)), while the quantity A (13) is equal to

y =P T

e (76)

where UO and ’UO are the values of the function U and bii when #=0.
The diffraction field of the wave le may be represented in the same manner
for the wave zone. In the forward half space, i.e., when —g<7)<TT the Hertz func-

tions of this field are given by the expressions

TR .
ap 270 o dxt A sin 5 sin o Jp (% sin ) SERAT U
N=—(—1i) E?B;l?l_,_m SinZ 9 R
). 2
e ‘37‘ ' (77)
1aa2| —2
] ]
n e— ' . « tg — . ;- 7
= —(—jypmZmag 02 Jplsnd) Fz et
ckz - . J1 sin 3 (cos I —cos ) 1+ a2 R
in2
2

while in the rear half space we have
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. :‘H .
sin ‘2‘ Pi)rll+L“ (24
o |

1 4xt A
W= (=)' s B —— - =
ek wp boeas cos % sin? 3 Hy, («x sin V) R
oy
g (78)
1+ 42 —2
t: 4 ik R
fi iyt L B S D7) et
cks . W b, - 1+ A2 R
sinm-cos -sin  H, (x sin ) (cos ) — cos \l’l)
2 2 r
where ﬁl is the value of the function T when §:n4§l, i.e., when zzhh
Y1
cos Pd=—.
os ¥ ”
in the forward

It is interesting to compare the radiation field of wave Hb

t
half space given by equation (77), with the field of the same wave (47) given
E0:H¢ differs

by the Huygens principle. The extract expression for the fields

from (47) by the factor

oAb
2sin-" sin o .
2 2 G-Tewliay
’

1+ cos i cos

while for fields E¢_-H it differs by the factor

3
tg—z‘
. 1=+ 4av -
sin " tg A
2 22/ i
1+ A2 © .

W
sin -
2

For large values of the parameter u and for angles & and 5} which are close

to T, these factors are close to unity so that the Huygens principle for forward

radiation must give good results.
Making the same comparison for the electric wave E , We can see that the fields

=H , according to equations (74), differs from these same fields given by

E

2
the Huygens principle (45) by the factor
w I\
g
R ——g—
sln‘)/ t W
2 o g 2 iU
3 1+ a2 ?
sin -5

The presence of the magnetic Hertz function

which becomes infinite when 8=m.
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in the radiation field (i.e., the fields E¢=-H:}is not conveyed at all by the

Huygens principle; as a matter of fact, under condition (71) the magnetic Hertz
function is small (almost for all directions) compared with the electric one,
which can be easily seen from equation (77). Generally speaking the radiation
of electric waves (which is characterized by small directionality) is not re-
flected as well by the Huygens principle as the radiation of magnetic fields.

The Huygens principle does not account at all for the radiation field in
the rear half space. The physical meaning of expressions for the field in the
rear half space under conditions (71) will be considered by us elsewhere.

For the sake of completion we also present equations for the reflection
and transformation coefficients in the form analogous to the equations of this

SeCthn; R = (x 4 11) (% 4 Ym) {:1 _ A2 2% (Y 4+ “'w) T cU1+Um
bm 2%m (".’I+Ym) 1+ 42 (* +71) (x+Y"l) _]
T = iA x =T el Tm
. l,m—1+Az %+ ¥ (1_P2 ):
'LIJ T
L
2
5 itm l_l - A2 2% (Y1 + Y¥m) eij“'?j'" (79)
ym=— T 2 R A A2 (x—% S
V(x+y/)(x +Ym) (]_P_2 )2Tm ('{l"-;,'w) ~ 1+ (x w (“ {m)
"
= __ ia [/ x4 2elytim
Tl\"’ T 1Al XA m p.;-z ~m

If we interpret U and U to mean the integrals (73), then all the equations
written out above are exact; computations by means of these equations are
rather complicated. However, when conditions (71) are satisfied, the integrals
(75) are reduced to the universal function

. e
i)

LY

Ufs, q)=~2—1:,—[ In (l—v — (80)

1—se
which was first introduced in our earlier work (ref. 32).
Specifically
U=U(s,q) U=Uf(s,q), (81)
where

5=VQ£ cos q:_I: (2(‘/.) é: ;-(2(4) (82)

The substitution (81) usually gives us a sufficiently accurate approx-
imation even for moderate values of x. Thus, when u=lk equations (76) and (81)
produce an error for the function A {when p=l),which is less than 1 percent.
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The derivation of the approximate equations completes the general theory
of nonsymmetric waves in a circular wave guide. Numeric results for the more
interesting types of waves will be presented elsewhere (ref. b).
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